COT 6405 Introduction to Theory of Algorithms

Topic 15. Minimum Spanning Tree

Minimum Spanning Tree

- Problem:
- given a connected, undirected, weighted graph

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

- find a spanning tree using edges that connects all nodes with a minimal total weight $w(T)=\operatorname{sum}(w[u, v])$
- $w[u, v]$ is the weight of edge (u, v)
- Objectives: we will learn
- Generic MST
- Kruskal's algorithm
- Prim's algorithm

Motivation Example

- Problem definition
- A town has a set of houses and a set of roads
- Each road connects 2 and only 2 houses
- A road connecting houses u and v has a repair cost $w(u, v)$
- Goal: Repair enough (and no more) roads such that
- everyone stays connected: can reach every house from all other houses, and
- The total repair cost is minimum

Model as a graph

- The problem can be modeled as a graph - Undirected weighted graph $G=(V, E)$. - Weight $w(u, v)$ on each edge $(u, v) \in E$.
- Find $T \subseteq E$, such that
$-T$ connects all vertices (T is a spanning tree)
- $w(T)=\sum_{(u, v) \in T} w(u, v)$ is minimized.
- A spanning tree whose weight is minimum over all spanning trees is called a minimum spanning tree, MST.

Growing a minimum spanning tree

- Building up the solution
- We will build a set A of edges
- Initially, A has no edges.
- As we add edges to A, maintain a loop invariant
- Loop invariant: A is a subset of some MST
- Add only edges that maintain the invariant
- Definition: If A is a subset of some MST, an edge (u, v) is safe for A, if and only if $A \cup\{(u, v)\}$ is also a subset of some MST
- So we will add only safe edges

Generic MST algorithm

GENERIC-MST(G,w)
$A=\emptyset$
while A is not a spanning tree find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Correctness

- Use the loop invariant to show that this generic algorithm works.
- Initialization: The empty set trivially satisfies the loop invariant.
- Maintenance: Since we add only safe edges, A remains a subset of some MST.
- Termination: All edges added to A are in an MST, so A is a spanning tree that is also an MST, when we stop

Definitions

- Let $S \subset V$ (vertex set); $A \subseteq E$ (edge set).
- A cut $(\mathrm{S}, \mathrm{V}-\mathrm{S})$ is a partition of vertices into two disjoint sets: S and V-S
- Edge $(u, v) \in E$ crosses the cut $(S, V-S)$ if one endpoint is in S and the other is in $V-S$.
- A cut respects edge set A, if and only if no edge in A crosses the cut.
- An edge is a light edge crossing a cut, if and only if its weight is minimum over all edges crossing the cut.
- For a given cut, there can be > 1 light edge crossing it.

Theorem

- Let edge set A be a subset of some MST
- (S,V-S) be a cut that respects edge set A
- No edges in A crosses the cut
- (u, v) be a light edge crossing cut ($S, v-S$).
- Then, (u, v) is safe for A.
- Proof
- Let tree T be an MST that includes edge set A
- If T contains edge (u, v), done.
- So, now assume that T does not contain edge (u, v)
- We'll construct a different MST T' that includes $A \cup$ $\{(u, v)\}$.

Proof

- Recall: a tree has a unique path between each pair of vertices (why?).
- Since T is an MST, it contains a unique path p between u and v.
- Path p must cross the cut ($S, V-S$) once
- Let (x, y) be an edge of p that crosses the cut
- As (u, v) is a light edge, we have $w(u, v) \leq w(x, y)$
- Since the cut respects A, edge (x, y) is not in A
- We can build tree T^{\prime} from T
- Remove (x, y): Breaks T into two components.
- Reconnects them with edge (u, v) $\rightarrow T^{\prime}$
- Except for the dashed edge (u, $v)$, all edges shown are in T

Proof

- So $T^{\prime}=T-\{(x, y)\} \cup\{(u, v)\}$.
- $\rightarrow T^{\prime}$ is another spanning tree
- $w\left(T^{\prime}\right)=w(T)-w(x, y)+w(u, v) \leq w(T)$
- since $w(u, v) \leq w(x, y)$
- Since (1) T^{\prime} is a spanning tree, (2) $w\left(T^{\prime}\right) \leq w(T)$, and (3) T is an MST $\rightarrow \mathrm{T}^{\prime}$ must be an MST
- Need to show that $A \cup\{(u, v)\} \subset T^{\prime}$
$-A \subseteq T$ and $(x, y) \notin A \quad \Rightarrow A \subseteq T-\{(x, y)\}$
$-A \cup\{(u, v)\} \subseteq T-\{(x, y)\} \cup\{(u, v)\}=T^{\prime}$
- Since T^{\prime} is an MST, edge (u, v) is safe for A.

MST: optimal substructure

- MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees
- Let T be an MST of G with an edge (u, v) in the middle
- Removing (u, v) partitions T into two trees T_{1} and T_{2}
- Claim: T_{1} is an MST of $G_{1}=\left(V_{1}, E_{1}\right)$, and T_{2} is an MST of $G_{2}=$ $\left(V_{2}, E_{2}\right)$
- Proof: $w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right)$
(There can't be a better tree than T_{1} or T_{2}, or T would be suboptimal)

Corollary

- If $\mathrm{C}=\left(\mathrm{V}_{\mathrm{C}}, \mathrm{E}_{\mathrm{C}}\right)$ is a connected component in the forest $\mathrm{G}_{\mathrm{A}}=$ (V, A)
- (u, v) is a light edge connecting C to some other component in G_{A}
- i.e., (u, v) is a light edge crossing the cut $\left(V_{c}, V-V_{C}\right)$
- Then, edge (u, v) is safe for A.
- Proof: Set $\mathrm{S}=\mathrm{V}_{\mathrm{C}}$ in the theorem.
- This naturally leads to the Kruskal's algorithm

Kruskal's algorithm

- Starts with each vertex being its own component
- Repeatedly merges two components into one by choosing the light edge that connects them
- Scans the set of edges in monotonically increasing order by weight
- Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

Disjoint Sets Data Structure

- A disjoint-set is a collection $C=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of distinct dynamic sets
- Each set is identified by a member of the set, called representative.
- Disjoint set operations:
- MAKE-SET(x): create a new set with only x
- assume x is not already in some other set.
- UNION(x, y): combine the two sets containing x and y into one new set.
- A new representative is selected.
- FIND-SET(x): return the representative of the set containing x.

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G$. Make-Set(v);

sort G.E by non-decreasing order by weight w for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet(v)
$A=A U\{\{u, v\}\} ;$
Union (u, v) ;

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\left\{\begin{array}{l}A=\varnothing ; \\ \text { for each } v \in G . \\ \quad \text { Make-Set }(v) ;\end{array}\right.$

sort G.E by non-decreasing order by weight w for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)

$$
A=A \cup\{\{u, v\}\} ;
$$

Union (u, v) ;
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$ Make-Set(v);
$\{$ sort G.E by non-decreasing order by weight w for each (u, v) $\in G . E$ (in sorted order) if FindSet(u) \neq FindSet (v)

$$
A=A \cup\{\{u, v\}\} ;
$$

Union (u, v) ;
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V \quad 21$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet(v) // same tree?
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u, v) $\in G . E$ (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u, v) $\in G . E$ (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v) ;
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u, v) $\in G . E$ (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u, v) $\in G . E$ (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) $\in G . E$ (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$
Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) $\in G . E$ (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G$.

sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G$.

sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G$.

sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G$.
Make-Set (v);

sort G.E by non-decreasing order by weight w
(for each (u, v) $\in G . E$ (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G$.

sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G$.

sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V \quad 21$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V \quad 21$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V \quad 21$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V \quad 21$? Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm

Run the algorithm:
Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V \quad 21$ Make-Set(v);
sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Kruskal's Algorithm: Done

Run the algorithm:
Kruskal (G, w)
\{
$A=\varnothing$;
for each $v \in G . V \quad 21$ Make-Set(v) ;
sort G.E by non-decreasing order by weight w
(for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)
$A=A U\{\{u, v\}\} ;$
Union (u, v);
\}

Correctness Of Kruskal's Algorithm

- Sketch of a proof: this algorithm produces an MST of T
- Assume algorithm is wrong: result is not an MST
- Then, algorithm adds a wrong edge at some point
- If it adds a wrong edge, there must be another lower weight edge
- But algorithm chooses lowest weight edge at each step. Contradiction

Kruskal's Algorithm

Kruskal (G, w)
$A=\varnothing$;
for each $v \in G . V$ FINDSET()/Union()

What will affect the running time?
Initialize A
O(1)
|V| MakeSet() calls
O(E lgE)
O(E) calls Make-Set(v);
sort G.E by non-decreasing order by weight w for each (u,v) $\in G$.E (in sorted order) if FindSet(u) \neq FindSet(v)

$$
A=A U\{\{u, v\}\} ;
$$

Union (u, v);

Kruskal's Algorithm: Running Time

- Initialize A: O(1)
- First for loop: |V| MAKE-SETs
- Sort E: O(E Ig E)
- Second for loop: O(E) FIND-SETs and UNIONs
- O(V) +O (E $\alpha(V))+0(E \lg E)$
- Since G is connected, $|E| \geq|V|-1 \Rightarrow O(E \alpha(V))+O(E \lg E)$
$-\alpha(|\mathrm{V}|)=\mathrm{O}(\lg \mathrm{V})=\mathrm{O}(\lg \mathrm{E})$
- Therefore, the total time is $\mathrm{O}(\mathrm{E} \lg \mathrm{E})$
$-|E| \leq|V|^{2} \Rightarrow \lg |E|=O(2 \lg V)=O(\lg V)$
- Therefore, O(E Ig V) time

Prim's algorithm

- Build a tree A
- Starts from an arbitrary "root" r.
- At each step, find a light edge crossing the cut ($V_{A^{\prime}} V$ V_{A}), where $V_{A}=$ vertices that A is incident on.
- Add this light edge to A.
- GREEDY CHOICE:
add min weight to A

[Edges of A are shaded.]

How to find the light edge quickly?

- Use a priority queue Q
- Each object is a vertex in $V-V_{A}$
- Key of v is the minimum weight of any edge (u, v), where $u \in V_{A}$
- the vertex returned by EXTRACT-MIN is v
- such that there exists $u \in V_{A}$, and edge (u, v) is a light edge crossing $\left(V_{A}, V-V_{A}\right)$
- Key of v is ∞, if v is not adjacent to any vertices in V_{A}

How to find the light edge quickly?

- The edges of A form a rooted tree with root r
$-r$ is given as an input to the algorithm, but it can be any vertex
- Each vertex knows its parent in the tree by the attribute $v . \pi=$ parent of v
$-\pi[v]=$ NIL, if $v=r$ or v has no parent.
- As the algorithm progresses, $A=\{(v, v . \pi): v \in V-\{r\}-Q\}$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u.key $=\infty$
$\mathrm{u} . \pi=\mathrm{NIL}$
r.key $=0$
$\mathrm{Q}=\mathrm{G} . \mathrm{V}$
while (Q not empty)
$\mathrm{u}=$ ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{gathered}
\text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
v . \pi=u \\
v . k e y=w(u, v)
\end{gathered}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$

while (2 not empty) Run on example graph
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\pi=$ NIL
r. key $=0$
$Q=G . V$

while (Q not empty) Run on example graph
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\boldsymbol{\pi}=\mathrm{NIL}$
r. key $=0$
$Q=G . V$

while (Q not empty) Pick a start vertex r
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\boldsymbol{\pi}=\mathrm{NIL}$
r. key $=0$
$Q=G . V$

while (Q not empty) Red vertices have been removed from Q^{Q}
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\boldsymbol{\pi}=\mathrm{NIL}$
r. key $=0$
$\mathrm{Q}=\mathrm{G} . \mathrm{V}$

while (Q not empty) Red arrows indicate parent pointers
$u=$ ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u.key }=\infty \\
& \text { u. } \pi=\text { NIL } \\
& \text { r.key }=0 \\
& Q=G . V
\end{aligned}
$$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$
while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$
while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$
while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\boldsymbol{\pi}=\mathrm{NIL}$
r. key $=0$
$Q=G . V$
while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\pi=$ NIL
r. key $=0$
$\mathrm{Q}=\mathrm{G} . \mathrm{V}$
while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\boldsymbol{\pi}=\mathrm{NIL}$
r. key $=0$
$\mathrm{Q}=\mathrm{G} . \mathrm{V}$
while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\boldsymbol{\pi}=\mathrm{NIL}$
r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r) for each $u \in G . V$
r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\pi=$ NIL
r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u. key $=\infty$
u. $\pi=$ NIL
r. key $=0$
$Q=G . V$

while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Review: Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$

$$
\begin{aligned}
& \text { u. key }=\infty \\
& \text { u. } \pi=\text { NIL }
\end{aligned}
$$

r. key $=0 \quad$ What is the hidden cost in this code?
$Q=G . V$
while (Q not empty)
u = ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{aligned}
& \text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
& v . \pi=u \\
& v . k e y=w(u, v)
\end{aligned}
$$

Review: Prim's Algorithm

```
MST-Prim (G, w, r)
    \(\mathrm{Q}=\mathrm{V}[\mathrm{G}] ;\)
    for each \(u \in Q\)
        key[u] \(=\infty\);
    key[r] \(=0\);
    \(\mathrm{p}[r]=\) NULL;
    while (Q not empty)
    \(u=\) ExtractMin (Q);
    for each \(v \in \operatorname{Adj}[u]\)
        if \((v \in Q\) and \(w(u, v)<k e y[v])\)
        \(\mathrm{p}[\mathrm{v}]=\mathrm{u}\);
    DecreaseKey (v, w(u,v));
```


Prim's Algorithm: running time

- We can use the BUILD-MIN-HEAP procedure to perform the initialization in lines 1-5 in $O(V)$ time
- EXTRACT-MIN operation is called $|V|$ times, and each call takes $O(\lg V)$ time, the total time for all calls to EXTRACT-MIN is $O(V \lg V)$

Running time (cont'd)

- The for loop in lines 8-11 is executed O(E) times altogether, since the sum of the lengths of all adjacency lists is $2|E|$.
- Lines 9-10 take constant time
- line 11 involves an implicit DECREASE-KEY operation on the min-heap, which takes $O(\lg V)$ time
- Thus, the total time for Prim's algorithm is $O(V)+O(V \lg V)+O(E \lg V)=O(E \lg V)$
- The same as Kruskal's algorithm

Summary

- We learned
- Generic MST
- Kruskal's and Prim's algorithm
- Common mistakes: Don't mix Kruskal's algorithm with Prim's algorithm

